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AbstractÐIn order to investigate the e�ects of a nonuniform electric ®eld on the behavior of a bubble,
a numerical study on the shape of a bubble attached to a conducting tip on a supporting wall is per-
formed. The equilibrium bubble shape is determined by solving the free boundary problem that consists
of the governing equation for electric ®eld and the normal stress condition at the bubble surface. A nu-
merically generated composite orthogonal coordinate system is employed to solve the free boundary
problem. A bubble on a tip is found to be extended in the direction parallel to the applied electric ®eld.
The elongation increases steeply with an increase of the electric ®eld strength and the height of the tip.
It is also observed that a highly elongated bubble has a shape with slender waist. The bubble shape
obtained from numerical studies are qualitatively similar to the shapes observed in experiments. If the
contact radius is maintained during bubble deformation, the contact angle and the aspect ratio increase
with the increase of the electric ®eld strength and the tip height. On the other hand, if the contact angle
is ®xed during bubble deformation, the contact radius decreases as the electric ®eld strength increases.
In order to estimate the e�ect of electric ®eld on the bubble departure volume, the surface tension force
and the downward electric force exerted on a bubble are also computed for a bubble of ®xed volume
under the ®xed contact angle condition. The sum of the two forces is found to decrease with increasing
strength of nonuniform electric ®eld. This fact suggests that the bubble departure volume decreases in a
nonuniform electric ®eld. # 1998 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

In recent years, the importance of electrohydrodynamic (EHD) enhancement of heat transfer in

the boiling process has been widely recognized by the heat transfer community. Among various

phenomena related to the EHD heat transfer enhancement, bubble dynamics modi®cation is of

great interest and has been the subject of many studies, because the e�ects of electric ®eld on

the heat transfer rate can be best understood in terms of bubble departure volume and fre-

quency. The studies for the e�ects of electric ®eld on the dynamics of a bubble attached to a

surface can be largely classi®ed into two groups based on the nature of the applied electric ®eld:

(i) the studies on the e�ects of uniform electric ®eld, and (ii) the studies on the e�ects of nonuni-

form electric ®eld, by uniform or nonuniform electric ®eld, in the present work, we mean an

electric ®eld that is uniform or nonuniform in the absence of a bubble).

The e�ects of a uniform electric ®eld has received relatively minor attention probably because

of its inapplicability to industrial evaporators, thus, only a few previous works have been

reported. By using the spheroidal approximation on the shape of a bubble, Cheng and

Chaddock (1986) investigated the e�ects of a uniform electric ®eld on the bubble departure size.

In order to obtain steady bubble shapes, they extended Fritz's analysis on the maximum bubble

volume to the boiling process in the presence of an electric ®eld. In the experiments on the

bubble behavior under DC electric ®eld, Ogata and Yabe (1993) observed a horizontal bubble

motion on the heating surface and enlargement of the area between the bubble and the heating

surface. They analyzed the behavior by considering the electric force exerted on the spheroidally

approximated bubble surface. Recently, Cho et al. (1996) performed numerical analyses and

Int. J. Multiphase Flow Vol. 24, No. 3, pp. 479±498, 1998
# 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0301-9322/98 $19.00+0.00PII: S0301-9322(97)00069-4

479



experiments on the behavior of a bubble attached to a wall in a uniform electric ®eld under the
isothermal condition. They computed numerically the equilibrium shapes of a bubble without
making approximation on the bubble shape. Since the contact radius and the contact angle can-
not be speci®ed simultaneously at the contact line between a bubble and a solid surface, they
considered two distinct cases: (i) the case in which the contact radius is speci®ed while the con-
tact angle varies with deformation, and (ii) the case in which the contact angle is speci®ed while
the contact radius varies with deformation. From the numerical results for the case of ®xed con-
tact radius condition, they found that the contact angle and the aspect ratio increase with an
increase of the electric ®eld strength. They also estimated the bubble departure volume by using
the equilibrium force balance at the contact point under the ®xed contact angle condition with
the expectation that the situation is well described by the ®xed contact angle condition. From
the analyses, it was found that the applied uniform electric ®eld does not have a signi®cant e�ect
on the bubble departure volume. This fact has been veri®ed by the experimental observation
that the bubble departure volume remains nearly constant under the isothermal condition even
though the strength of the applied uniform electric ®eld increases.

In contrast to the case of uniform electric ®eld, great e�orts have been made to study the
mechanisms of boiling heat transfer enhancement in a nonuniform electric ®eld. However, due
to the complexity of the electrohydrodynamic phenomena involved, theoretical works are very
few and the majority are experimental studies (Watson 1961; Edkie 1976; Karayiannis et al.
1988; Ogata et al. 1992. Of course, there has been a macroscopic explanation based on the con-
cept of the dielectrophoretic force (Pohl 1958). In a nonuniform electric ®eld, a net force acts on
a bubble due to the combined e�ect of the di�erent permittivities between the liquid and gas
phases and the gradient of the square of the electric ®eld. This force attracts a bubble toward
the region of weaker electric ®eld no matter of its polarity. In a typical pool boiling system that
consists of a heated wire and a surrounding cylindrical electrode, this force tends to pull bubbles
o� from the heated wire surface more rapidly. Indeed, it has been observed that more bubbles
of smaller size depart from the heating surface due to a nonuniform electric ®eld and that the
heat transfer is enhanced (Bonjour and Verdier 1960; Markels and Durfee 1964; Baboi et al.
1968; Schnurmann and Lardge 1973; Jones 1978). Based on these experimental observations, it
is believed that an imposed nonuniform electric ®eld leads to modi®ed bubble dynamics, which
in turn promotes boiling heat transfer.

The above macroscopic theory is, however, far from being satisfactory. The theory may be
applied to the suspended bubbles in liquid medium, but that is not the case for the bubbles
attached to solid wall. Since the theory has been developed based on the volume average con-
cept, it cannot be applied to the bubbles on the boundary. Thus, the promising augmentation
technique still awaits more satisfactory understanding on the fundamental mechanism. As men-
tioned above, the intrinsic complexity of boiling process has hindered the theoretical develop-
ment for the electrohydrodynamic phenomena. Even in theoretically oriented works, which have
been available thus far, the correlation of experimental data takes the major part (Choi 1962;
Johnson 1968; Lovenguth and Hanesian 1971; Berghmans 1976; Cooper 1990). Therefore,
detailed knowledge of behavior of a bubble, which is attached to a solid wall in the presence of
a nonuniform electric ®eld, is necessary to clarify the basic mechanisms of electrohydrodynamic
boiling process.

In this present study, a ®rst attempt in this general direction, numerical analyses are per-
formed to investigate the e�ects of a nonuniform electric ®eld on the static deformation charac-
teristics of a bubble attached to a solid surface in isothermal conditions. As a model problem
that involves axisymmetric nonuniform electric ®eld, a cylindrical conducting tip on a support-
ing wall is considered. As will be shown later, the electric ®eld is strongly converged near the
conducting tip and a nonuniform electric ®eld is formed.

The relevance of this work to the electrohydrodynamic boiling process may be found from
the fact that the e�ects of electric ®eld on the bubble departure volume can be estimated by con-
sidering only the static behaviors as long as the bubble growth is slow. Therefore, in the later
part of this work, the surface tension force and the downward electric force exerted on the
bubble surface will be computed under the ®xed contact angle condition to estimate the e�ects
on the departure volume with the assumption of slow growth. Although the problems are di�er-
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ent, there exist some previous works which may justify the estimation of departure volume by
considering only the static situation (OgÄ uz and Prosperetti 1993; Longuet-Higgins et al. 1991).
OgÄ uz and Prosperetti considered the dynamics of bubble growth and detachment from a needle
(in the absence of electric ®eld) by using an approximate model and a full numerical model
based on a boundary-integral potential ¯ow calculations. As part of the full numerical results,
they showed explicitly that the departure volume is nearly independent of growth rate if the
growth rate is less than the critical value. Although the problem is di�erent from the present
one in that they computed the departure volume by using the ®xed contact radius condition in
the absence of electric ®eld, their results clearly show that the dynamical contribution is negli-
gible as long as the growth is slow.

2. PROBLEM STATEMENT

In order to study the e�ects of a nonuniform electric ®eld on the deformation of a bubble in
a liquid, we consider a gas bubble attached to a tip on a wall as shown in ®gure 1. The conduct-
ing tip electrode is a cylinder of height h and radius w, and is assumed to be supported by two
types of bottom wall: a conducting wall and an insulating wall. In the ®gure, x and s are the
symmetry axis and the radial coordinate of the cylindrical coordinate system, and r and y are
the coordinate variables in the spherical coordinate system. The origin is located at the center of
the bottom of bubble, and thus r = (x2+s2)1/2. For convenience in analysis, we divide the pro-
blem domain into two parts: the subdomain (I) where x>0, and the subdomain (II)
whereÿ hRxR0, wRs <1.

The system is assumed to be under isothermal conditions so that the properties of the sur-
rounding liquid and gas inside the bubble are uniform. The bubble volume is assumed to be
2pa3/3, where a is the radius of an equivalent hemispherical bubble attached to a tip. The
bubble surface is assumed to be characterized by the surface tension g and the bubble is
assumed to sit on the conducting tip with contact angle yc and contact radius rc. In our numeri-
cal studies, the bubble volume and the contact radius are assumed to be maintained during
bubble deformation. The electrical conductivity and permittivity of the gas inside the bubble are
assumed to be negligible in comparison with those of the surrounding liquid. It is also assumed
that there is no bulk free charge in the surrounding incompressible liquid. The applied electric
®eld far from the bubble is given by E1=ÿ E1ex. In terms of the electric potential, which is
de®ned by E1=ÿHf1, the far ®eld is given by

f1 � E1�x� h�: �1�
As mentioned above, it is assumed that there is no bulk free charge in the surrounding liquid.
Therefore, the electric potential satis®es the Laplace equation

Figure 1. A schematic for a bubble attached to a conducting tip on a wall in a nonuniform electric
®eld..
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r2f � 0: �2�
The boundary conditions at the bubble and tip surfaces are

f4E1�x� h� as r41; �3�

n � rf � 0 on the bubble surface; �4�

f � 0 for x � 0; rcRsRw; �5�

f � 0 for s � w; ÿhRxR0; �6�

f4E1�x� h� for ÿ hRxR0; s41; �7�
where n is the outgoing unit normal vector from the bubble surface. The boundary condition at
the bottom wall (x =ÿ h, wRs <1) is

f � 0 for conducting wall; �8�
or

ex � rf � 0 for insulating wall: �9�
Equation [4] is the condition that the normal component of the current vector vanishes at the
insulating interface. Equations [5] and [6] are the conditions that the surface potential of a con-
ducting tip electrode must be uniform.

The bubble shape is determined by the normal stress condition, which can be simpli®ed to

ÿ�pout ÿ pin� � n � �n � Te�out � g�r � n�; �10�
under the assumption that the electrical conductivity and permittivity of the gas inside the
bubble are negligible in comparison with those of the surrounding liquid. Under the given
assumption, n�(n�Te)in is negligible compared with n�(n�Te)out. In [10], pout is the pressure simply
rede®ned by addition of an electrically induced pressure based on the incompressibility assump-
tion for the surrounding liquid. The Maxwell stress tensor Te is given by

Te � EEEÿ 1
2EE

2I; �11�
where E is the electrical permittivity and E is the magnitude of E. By using the condition
En=n�Hf = 0 at the bubble surface, the normal stress condition can be written as

ÿDp0 � Drgxÿ 1
2EE

2
t � g�r � n�; �12�

where Dp0 is the pressure di�erence at x = 0, Dr the density di�erence, and Et the tangential
component of the electric ®eld.

The contact condition of a bubble to the solid surface has not been fully established yet.
Nevertheless, we need to specify the condition in order to make the problem determinate. In the
present work, we have considered two distinct cases: (i) the case in which the contact radius is
speci®ed while the contact angle varies with bubble deformation, and (ii) the case in which the
contact angle is speci®ed while the contact radius varies with bubble deformation.

To non-dimensionalize the governing equations and boundary conditions, we introduce the
following characteristic scales

lc � a; fc � E1lc: �13�
Then the dimensionless governing equation and boundary conditions are (we adopt the same
notations for the dimensionless variables as dimensional ones if not confused)

r2f � 0; �14�
with
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f4x�H as r41; �15�

n � rf � 0 on the bubble surface; �16�

f � 0 for x � 0; RcRsRW ; �17�

f � 0 for s �W; ÿHRxR0; �18�

f4x�H at ÿHRxR0; s41; �19�

f � 0 �conducting wall� for x � ÿH; WRs <1;
ex � rs � 0 �insulating wall� for x � ÿH; WRs <1; �20�

where H and W are the dimensionless tip lengths de®ned by H = h/a, W = w/a and Rc the
dimensionless contact radius, rc/a.

The dimensionless normal stress condition is

ÿNp �NgxÿNe

2
E2
t � �r � n�; �21�

where Np=Dp0a/g and Ng=Drga2/g. In this present work, the magnitude of electrical stress is
assumed to be negligible with respect to the gas pressure inside the bubble. Therefore, the gas
inside the bubble is assumed to be incompressible in order to have the condition of a ®xed
bubble volume. This condition of ®xed bubble volume is used to determine the constant Np.
The gravity-capillary number (Crowley 1995). Ng, represents the ratio of gravity force to surface
tension force on the bubble surface. In this work, it is assumed that the gravity e�ect is negli-
gible, that is Ng40, based on the observation that the bubble radius ranged from 0.1 mm to
0.3 mm in the experiment of which the results will be shown later. Another dimensionless num-
ber of importance in [21] is Ne, which is de®ned by Ne=EE2

1a/g and is called the electrical
Weber number. The electrical Weber number Ne is the ratio of the electrical force to the surface
tension force. Thus, in general, the bubble deformation increases as Ne increases.

In this work, the free boundary problem de®ned by [14]±[21] has been solved numerically by
using an orthogonal grid generation method.

3. NUMERICAL SCHEME

The domain of the present problem is quite complicated. Thus, for convenience in analysis,
we divide it into two parts: the subdomain (I) where x>0, and the subdomain (II) where
ÿHRxR0, WRs <1. For the subdomains (I) and (II), we de®ne the electrical potentials as
f(I) and f(II), which can be obtained by solving two Laplace's equations with the boundary con-
ditions in [15]±[20] if suitable matching conditions are provided at the interface of two subdo-
mains. The matching conditions at the interface of two subdomains (x = 0, WRs <1) are

f�I� � f�II� �22�
and

@f�I�

@x
� @f

�II�

@x
: �23�

A composite coordinate system is used for the numerical analysis. The composite coordinate
system consists of the boundary-®tted orthogonal curvilinear coordinate system in the subdo-
main (I) and the simple cylindrical coordinate system in the subdomain (II) as shown in the
right part of ®gure 2. For the free boundary problem in the subdomain (I), the boundary shape
must be determined iteratively as part of solution starting from a certain initial shape. We use
the method of Ryskin and Leal (1983) for generation of the boundary-®tted orthogonal grid
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system in the subdomain (I). Their numerical grid generation method has been successfully
applied for various free boundary problems in ¯uid mechanics (Kang and Leal 1987); Noh et al.
1993).

In this section, the basic idea of grid generation for a composite coordinate system is brie¯y
introduced. The global numerical scheme to obtain the electric potential with determination of
bubble shape in a composite coordinate system will also be presented.

3.1. Generation of composite grid system

Numerical generation of a composite grid system in the subdomains (I) and (II) is schemati-
cally shown in ®gure 2. The boundary-®tted orthogonal coordinate system is ®rst generated in
the subdomain (I) then the coordinates in (II) are generated.

Since the subdomain (I) is an in®nite domain, the inverse conformal mapping

x� is � 1

x� ÿ is�
�24�

is used to transform the grid generation problem to one in a ®nite (x*, s*) domain. The orthog-
onal coordinate mapping between the (x*, s*) domain and the computational domain (x, Z) is
generated by solving the covariant Laplace equations (see Ryskin and Leal (1983), for the
details),

@

@x
f
@x�

@x

� �
� @

@Z
1

f

@x�

@Z

� �
� 0; �25�

@

@x
f
@s�

@x

� �
� @

@Z
1

f

@s�

@Z

� �
� 0; �26�

where f(x, Z) is the distortion function de®ned as the ratio of two scale factors, that is f0h(I)Z /
h(I)x . For grid generation, we have followed Ryskin and Leal (1984) in which the distortion func-
tion is speci®ed as a function of x, that is f = px/2.

Figure 2. The grid generation scheme of a composite orthogonal coordinate system..
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The rectangular coordinate system in the subdomain (II) can be easily generated by using the
known values of s(x, 1) obtained from the orthogonal grid system for subdomain (I). In subdo-
main (II), the x = const lines are simple continuation of x = const lines in (I). The Z = const
lines in (II) are equi-distance lines parallel to s-axis.

3.2. Governing equation and boundary conditions in composite coordinate system

As mentioned previously, the solution technique is based upon a numerically generated or-
thogonal coordinate system. Therefore, we start with the expressions for the governing equation
and boundary conditions in such a coordinate system.

In the subdomain (I), the Laplace equation for the electric potential around a bubble f(I) is
expressed as (Batchelor 1967)

@

@x
hns
hx

@f�I�

@x

 !
� @

@Z
hxs
hZ

@f�I�

@Z

 !
� 0: �27�

In order to avoid the di�culty arising from the singularity at in®nity, we de®ne a function f*

as f* = f(I)ÿf0, where f0 is an unbounded function such that f04x + H. Therefore we can
assume f* 4 0 as r 41. In this problem, we have used function f0

f0 �
1

2r2
� r

� �
cos y�H � x

1

2r3
� 1

� �
�H: �28�

Using the relation f(I)=f* + f0, we obtain the governing equation for f* in orthogonal coor-
dinates

@

@x
hZs
hx

@f�

@x

� �
� @

@Z
hxs
hZ

@f�

@Z

� �
� ÿ @

@x
hZs
hx

@f0

@x

� �
ÿ @

@Z
hxs
hZ

@f0

@Z

� �
; �29�

with the boundary conditions

f� � 0 at x � 0; 0RZR1; �30�

@f�

@x
� ÿ @f0

@x
at x � 1; 0RZR1; �31�

@f�

@Z
� ÿ @f0

@Z
at Z � 0; 0RxR1; �32�

@f�

@Z
� h�I�Z

h
�II�
Z

@f�II�

@Z
ÿ @f0

@Z
at Z � 1; 0RxRxt; �33�

f� � ÿf0 at Z � 1; xtRxR1; �34�
where [33] is one of the matching conditions [23] at the interface of the
subdomains (I) and (II), and xt is the x-coordinate value representing the tip position in (x, Z)
domain.

In the subdomain (II), the Laplace equation for the electric potential around a tip f(II) is also
expressed as

@

@x
hZs
hx

@f�II�

@x

 !
� @

@Z
hxs
hZ

@f�II�

@Z

 !
� 0: �35�

The governing equation [35] is solved subject to the boundary conditions

f�II� � x�H at x � 0; 1RZRZt; �36�
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f�II� � 0 at x � xt; 1RZRZt; �37�

f�II� � 0 �conducting wall� at Z � Zt; 0RxRxt;

@f�II�

@Z
� 0 �insulating wall� at Z � Zt; 0RxRxt;

�38�

f�II� � f�I� at Z � 1; 0RxRxt; �39�
where [38] is the bottom wall condition, [39] the matching condition at the interface of two sub-
domains, and Zt the Z-coordinate value representing the position of bottom wall in (x, Z)
domain.

To obtain numerical solutions of the governing equations [29] and [35], we have expressed
them in a general form as

0 � f 2
@2o

@x2
� @

2o
@Z2
� q1

@o
@x
� q2

@o
@Z
� q3o� q4; �40�

in which o represents f(I) or f(II) and qi are coe�cients that do not depend on o. To solve [40],
we modi®ed it into a ®ctitious time-dependent problem and used the ADI method, which can be
represented as

o��1=2 ÿ o�
1
2t

� f 2
d2o��1=2

dx2
� d2o�

dZ2
� q1

do��1=2

dx
� q2

do�

dZ
� q3o��1=2 � q4; �41�

o��1 ÿ o��1=2
1
2t

� f 2
d2o��1=2

dx2
� d2o��1

dZ2
� q1

do��1=2

dx
� q2

do��1

dZ
� q3o��1 � q4; �42�

where n is the iteration number. The ®ctitious time step size t is of O(10ÿ3) and the convergence
criterion is

maxjo��1=2i;j ÿ o�i;jj < 10ÿ9:

3.3. Normal stress condition at the free surface

In order to determine the bubble shape in an electric ®eld, we need to consider the normal
stress balance at the bubble surface. When Ng40, the normal stress condition [21] reduces to
the form

ÿNp ÿNe

2
E2
Z ÿ �k�Z� � k�j�� � 0; �43�

where EZ=(1/hZ)(@f/@Z), and k(Z) and k(j) denote the curvatures in the e(Z) and e(j) directions.
For the axisymmetric orthogonal coordinate system, the curvatures are given by

k�Z� � 1

h3Z

@x

@Z
@2s
@Z2
ÿ @

2x

@Z2
@s
@Z

� �
; k�j� � ÿ 1

hZs
@x

@Z
: �44�

Since we assume that the bubble volume is ®xed, the value of Np in [43] must be determined so
as to satisfy the following condition at the bubble surface

V �
����p �1

0

s2
@x

@Z

� �
dZ
���� � const: �45�

4. RESULTS AND DISCUSSION

As a reference problem, we have considered an insulating bubble attached directly to a con-
ducting wall (H = 0). (In this case, the electric ®eld would be uniform in the absence of the
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bubble.) Figure 3(a) shows the equipotential lines around the bubble for the case of H = 0,

Rc=0.6 and Ne = 0.1. As shown in the ®gure, the equipotential lines become curved near the

bubble surface to satisfy the boundary condition @f/@n = 0, but the electric ®eld is virtually uni-

form away from the bubble. For the case of a bubble attached to a tip on a conducting wall,

however, ®gure 3(b) and 3(c) show that the equipotential lines are highly curved in the vicinity

of the bubble and the tip. (In this case, the electric ®eld would be nonuniform even if the bubble

is absent.) Compared with the case of direct attachment of a bubble to conducting wall

(®gure 3(a)), we can see that the electric ®eld is much more nonuniform near the bubble. The

nonuniformity of electric ®eld extends far from the bubble due to the presence of the tip.

Figure 4 shows the equipotential lines around a bubble attached to a tip on an insulating wall

for two values of H. As shown in the ®gure, the electric potential satis®es the insulating bound-

ary condition at the bubble surface and the supporting wall, @f/@n = 0, simultaneously.

Therefore, the electric ®eld converges only to the tip. This electric ®eld concentration due to

convergence implies that a strongly nonuniform electric ®eld is generated near the bubble and

the tip. As the tip height increases, this ®eld concentration e�ect is added to the e�ect due to

increase of tip height.

From the numerical results on the electric potential distribution, the electric force exerted on

the bubble surface can be obtained. In ®gure 5, the n-directional component of the dimension-

less electric force, n�(n�Te) exerted on the bubble surface due to the applied electric ®eld in the

case of conducting wall is shown for several values of H. As shown in the ®gure, the magnitude

of electric force has minimum value at the pole of bubble (y = 08), and maximum value at the

lower side of the bubble (67.58RyR76.58). Since the values are negative, the electric ®eld exerts

a force inward, (that is ÿn direction) or suppress the bubble surface. The bubble deforms inward

near y = 708 and outward near y = 08 to keep the bubble volume constant. The maximum

value of the electric force magnitude increases with an increase of the tip height. In consequence,

the nonuniform distribution of the electric force becomes stronger as the tip height increases.

The e�ect of electric ®eld concentration on the electric force exerted on the bubble surface is

shown in ®gure 6 for various values of H. As mentioned earlier, the electric ®eld is concentrated

and becomes stronger near the surface of the conducting tip when the bottom wall is insulating.

As shown in ®gure 6, the e�ect of electric ®eld concentrations due to the insulating bottom wall

is prominent when H is small, but the e�ect decreases as H increases. Therefore, the electric

force distribution at the bubble surface is more sensitive to the electric ®eld concentration e�ect

due to insulating bottom wall in the case of smaller tip height. From the numerical results, we

can expect that the degree of bubble deformation is largely a�ected by the nonuniformity of the

electric ®eld which depends on the height of the tip and the type of supporting wall.

In ®gures 7±9, the bubble shape evolution with increasing Ne values under the ®xed contact

radius condition is shown for the case of a conducting wall. When other parameters are ®xed, a

bubble becomes more extended as the electric ®eld strength increases. When H= 0, the bubble

shape does not change much over the entire range of Ne values considered in the study. When

Figure 3. Equipotential lines around a bubble attached to a tip on a conducting wall (W= 3.2,
Rc=0.6, Ne=0.1): (a) H = 0, (b) H= 5, (c) H = 10..
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H>2, however, the degree of deformation increases remarkably as Ne increases. For the same
value of Ne(Ne>0), we can see that the degree of deformation increases drastically as H
increases. It has also been observed that a bubble on a tip has a slender waist at the lower side
when the degree of deformation is very large. This slender waist is believed to be due to the dis-
tribution of the electric force at the bubble surface such as the one shown in ®gure 5.

Figures 10 and 11 show the evolution of bubble shape for the cases of insulating bottom wall.
As mentioned earlier, owing to the strongly nonuniform electric ®eld near the bubble in this
case, the bubble shape with slender waist can be obtained even at smaller values of Ne com-
pared with the cases of conducting bottom wall (see ®gures 8 and 9).

The above deformation characteristics may be veri®ed by the experimental observations of
Kweon et al. (1995). Photographs in ®gure 12 show the shape of an air bubble attached to a
needle electrode: ®gure 12(a) for the case of the conducting bottom wall, and ®gure 12(b) for
the case of the insulating bottom wall. Since the uniform electric ®eld condition at in®nity is not
assumed in experiment due to the ®nite ratio of the electrode gap distance to the needle height,
no quantitative comparison with numerical results has not been made. However, we can see that
the qualitative deformation characteristics are in good agreement with the numerical results at
least in two aspects. Firstly, a highly deformed bubble has a slender waist. Secondly, when the
applied electric ®eld strength is the same, the degree of deformation is higher in the case of insu-
lating bottom wall (or plate).

The imposed electric ®eld also a�ects the contact angle yc via bubble deformation. Figure
13(a) shows the dependency of the contact angle on Ne for the case of conducting bottom wall.
When H = 0, the contact angle remains nearly constant over the whole range of Ne values that
are considered. As the height of tip increases, the contact angle increases with increase of Ne

Figure 4. Equipotential lines around a bubble attached to a tip on an insulating wall (W= 3.2,
Rc=0.6, Ne=0.1): (a) H = 5, (b) H= 10..

Figure 5. The n-directional component of the electric force (n�(n�Te) in dimensionless form) exerted on
the bubble surface in the case of conducting wall for several H values (W= 3.7, Rc=0.5, Ne=0.1)..
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value. When Hr5, the contact angle increases almost vertically beyond a certain value of ®eld
strength. Although this has not been con®rmed yet, it may be speculated that there exists no
steady bubble shape beyond a certain critical value of Ne. This trend is even more prominent in
the case of insulating bottom wall as shown in ®gure 13(b). Even for H = 2, we observed the
same trend. This very steep increase of contact angle is due to high degree of deformation which
results from the electric ®eld concentration near the tip.

In ®gure 14, the relative aspect ratio (AR)e/(AR)0, where (AR)0 represents the aspect ratio of
the undeformed bubble in the absence of an electric ®eld, is shown as function of Ne for con-
ducting and insulating bottom walls, respectively. In the case of conducting wall(®gure 14(a)),
when H = 0 or H = 2, the relative aspect ratio increases almost linearly with the applied electric
®eld strength. But, when Hr5, the relative aspect ratio increases very steeply. In the case of
insulating wall (®gure 14(b)), as in the case of the contact angle, steep increase of aspect ratio is
observed even for small H values due to the strong nonuniform electric ®eld near the bubble.

Figure 6. Comparison of the electric forces exerted on the bubble surface in the cases of conducting
wall (dotted lines) and insulating wall (solid lines) (W= 3.7, Rc=0.5, Ne=0.1): (a) H = 2, (b) H = 5,

(c) H = 10..
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Figure 7. Numerical solutions for the shape of a bubble attached to a conducting wall (H= 0,
Rc=0.5): (a) Ne=0.0, (b) Ne=0.6, (c) Ne=0.8, (d) Ne=1.0..

Figure 8. Numerical solutions for the shape of a bubble attached to a tip on a conducting wall (H = 2,
W= 3.7, Rc=0.5): (a) Ne=0.0, (b) Ne=0.6, (c) Ne=0.8, (d) Ne=1.0..
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Figure 9. Numerical solutions for the shape of a bubble attached to a tip on a conducting wall (H = 5,
W= 3.7, Rc=0.5): (a) Ne=0.0, (b) Ne=0.3, (c) Ne=0.55, (d) Ne=0.59..

Figure 10. Numerical solutions for the shape of a bubble attached to a tip on an insulating wall
(H= 2, W= 3.7, Rc=0.5): (a) Ne=0.0, (b) Ne=0.2, (c) Ne=0.3, (d) Ne=0.39..
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Consequently, it may be concluded that the nonuniform electric ®eld and its intensity have sig-
ni®cant e�ect on the bubble deformation.

Figure 15 shows the numerical results for the contact angle as a function of contact radius
for several Ne values in the cases of conducting and insulating bottom walls with H = 2, re-
spectively. From the ®gure, we can see that the contact angle increases with an increase of
electric ®eld strength under the ®xed contact radius condition. From the same ®gure, we can
also estimate the e�ect of an electric ®eld on the contact radius change when the ®xed contact
angle condition is used. It is observed that the contact radius decreases with the increase of
Ne. The decrease in the contact radius is much more prominent in the case of insulating bot-
tom wall.

The bubble departure volume is also a�ected by the electric ®eld. When an electric ®eld is
applied, the dimensional force balance for a bubble at departure time can be written as

DrgVd � 2pgrc sin yc �
�
A

�ÿex� � �n � Te�dA; �46�

where Vd and A denote the bubble departure volume and the bubble surface area at departure
time. The LHS term in [46] is the ex directional (upward) component of the buoyancy force,
and the ®rst and second terms in RHS are the ÿex directional (downward) components of the
surface tension and electric forces. Hereinafter we discuss the e�ect of electric ®eld on the
bubble departure volume under the ®xed contact angle condition as in Cheng and Chaddock
(1986). As can be seen in ®gure 15, the contact radius decreases with an increase of electric ®eld
strength under the ®xed contact angle condition. This reduction in the contact radius results in
the decrease of the surface tension force between the bubble and the tip electrode. Therefore, if
the ÿex directional (downward) force exerted on the bubble surface by the electric ®eld exceeds
the amount of decrease in the surface tension force, the departure volume increases. If an
applied electric force is the same as the amount of decrease in the surface tension force, the
departure volume remains unchanged. But, when the electric force is smaller than the amount of
decrease in the surface tension force, the departure volume decreases.

Figure 11. Numerical solutions for the shape of a bubble attached to a tip on an insulating wall
(H= 5, W= 3.7, Rc=0.5): (a) Ne=0.0, (b) Ne=0.2, (c) Ne=0.3, (d) Ne=0.32..
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In order to estimate the e�ect of electric ®eld on the departure volume, we have computed the
shape of a bubble in an electric ®eld under the ®xed contact angle condition. During this
process, the contact radius (rc) and the deformed bubble shape are determined to compute the
surface tension force (the ®rst term of RHS of [46]) and the ÿex directional electric force
(the second term of RHS of [46]). Figure 16 shows the variations of the dimensionless surface

Figure 13. Numerical results for variation of the contact angle with increase of Ne for various values of
H (W= 3.7, Rc=0.5): (a) conducting wall, (b) insulating wall.

Figure 12. Experimental visualization of the shape of an air bubble attached to a needle electrode (rep-
rinted from Kweon et al. 1995): (a) on a conducting plate, (b) on a te¯onated plate.
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tension force and the dimensionless ÿex directional electric force scaled by the characteristic

force scale (Fc=ga) with the applied electric ®eld strength when the contact angle is ®xed at 608
(yc=608). In the case of a conducting bottom wall, owing to the decrease in the contact radius,

the surface tension force decreases with increase of Ne as shown in ®gure 16(a). When H = 0,

this reduction of the surface tension force is slightly exceeded by the electric force. Therefore the

ÿex directional net force exerted on a bubble increases very slowly with the increase of Ne as

shown in ®gure 17. On the other hand, when H = 2, the downward electric force is not su�-

cient to make up for the decrease in the surface tension force. Thus the ÿex directional net force

decreases with increase of Ne (see ®gure 17). In the case of an insulating bottom wall, the high

degree of deformation due to the electric ®eld concentration results in a large decrease in the

surface tension forces as shown in ®gure 16(b). The amount of this remarkable decrease in the

surface tension force is much larger than the downward electric force for conducting wall case.

Therefore, the ÿex directional resultant force on a bubble decreases considerably with increase

of electric ®eld strength as shown in ®gure 17. The dimensionless downward resultant force (sur-

face tension force plus electric force) exerted on the bubble for both types of supporting wall

are summarized in ®gure 17.

As mentioned earlier, the e�ects of electric ®eld on the departure volume can be estimated

even with the results obtained for a bubble under the ®xed volume condition. In ®gure 17,

shown are the resultant dimensionless downward forces scaled by ga, where a is the character-

Figure 14. Numerical results for variation of the relative aspect ratio with increase of Ne for various
values of H (W= 3.7, Rc=0.5): (a) conducting wall, (b) insulating wall.
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istic length scale. Let us assume that lc=a is the radius of the equivalent hemispherical bubble
to a bubble at departure time (that is Vd=V0=2pa3/3) under the zero electric ®eld condition.
Then at this volume the LHS and the RHS of [46] are just balanced. Now, if the resultant
force (surface tension force plus ÿex directional electric force) increases with the increase of
Ne, this means that at the volume V0=2pa3/3 the RHS is larger than the LHS of [46] and
that the bubble departure occurs at larger volume than the departure volume under the no
electric ®eld condition (that is Vd>V0). On the other hand, if the resultant force decreases
with the increase of Ne, this means that the departure volume decreases, that is Vd decreases
as Ne increases. Therefore, the results in ®gure 17 suggest that the departure volume slightly
increases with the increase of electric ®eld strength for conducting wall without tip. This beha-
vior has been veri®ed by the experimental results in our previous paper (Cho et al. 1996).
However, in the case of nonuniform electric ®eld due to the presence of a tip, we can see that
the electric ®eld decreases the departure volume considerably. Especially, this tendency of
departure volume decrease is prominent in the case of insulating bottom wall. This behavior
has been well veri®ed by the experimental observations on the bubble departure volume as
shown in ®gure 18. In the experiment, an air bubble attached to a needle tip in cyclohexane
was studied. The detailed information for the experiment has been published elsewhere
(Kweon et al. 1995). From the ®gure and the numerical results, it may be concluded that the
departure volume decreases as the nonuniformity of electric ®eld increases due to the electric
®eld concentration near the bubble.

Figure 15. Plot of the contact angle vs. the dimensionless contact radius for several Ne values (H = 2,
W= 3.7, Rc=0.5): (a) conducting wall, (b) insulating wall.
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Figure 16. Numerical results for the downward surface tension and electric forces (dimensionless forces
scaled by ga) exerted to a bubble of ®xed reference volume under the ®xed contact angle condition

(yc=608): (a) conducting wall, (b) insulating wall..

Figure 17. Numerical results for the dimensionless resultant force (surface tension force plus ÿex direc-
tional electric force) exerted to a bubble of ®xed reference volume (yc=608)..
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5. CONCLUSION

In order to investigate the e�ects of a nonuniform electric ®eld on the deformation character-
istics of a bubble, numerical analyses on the steady shape of a bubble attached to a conducting
tip on a supporting wall have been carried out. Two types of supporting wall are considered: a
conducting and an insulating wall. From the numerical studies, we have reached the following
conclusions:

(i) For both types of supporting wall, the local electric ®eld strength near the bubble increases
as the tip height increases. Therefore, the bubble elongation increases as the tip height
increases. Especially in the case of insulating supporting wall, the local electric ®eld near the
bubble becomes even stronger due to the electric ®eld concentration e�ect near the conduct-
ing tip. This ®eld concentration e�ect due to insulating bottom wall is prominent when the
tip height is small.

(ii) When the ®xed contact radius condition is used, the contact angle and the relative aspect
ratio increase rapidly as the strength of the applied electric ®eld increases. The rate of
increase is higher for larger value of tip height.

(iii) When the ®xed contact angle condition is used, the contact radius decreases as the strength
of the applied electric ®eld increases for both types of supporting wall.

(iv) The e�ects of electric ®eld on the bubble departure volume have been estimated by comput-
ing the surface tension force and the downward electric force exerted on the bubble of a
®xed reference volume under the ®xed contact angle condition. In the case of conducting
bottom wall without tip, the downward electric force is slightly larger than the amount of
decrease in the surface tension force. This fact suggests that the departure volume increases
slightly with the increase of electric ®eld strength.

(v) In the cases of nonuniform electric ®eld due to the presence of a tip or the insulating bottom
wall, the sum of surface tension force and the downward electric force decreases as the elec-
tric ®eld strength increases. This fact suggests that the departure volume decreases with the
increase of electric ®eld strength. This tendency becomes more prominent as the tip height
increases due to the electric ®eld concentration e�ect.
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Figure 18. Experimental measurements of the relative departure volume for an air bubble attached to a
needle tip in cyclohexane medium in the cases of conducting and insulating walls (detailed information

on the experiment can be found from Kweon et al. (1995))..
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